Stripped-down Poker:
A Classroom Game to Illustrate Equilibrium Bluffing

David H. Reiley, Michael B. Urbancic, and Mark Walker

First version: May 2004
This version: February 2005

Abstract

This paper proposes a simplified version of poker as an instructional classroom game. In spite of the game’s simplicity, it provides an excellent illustration of a number of topics: signaling, bluffing, mixed strategies, the value of information, and Bayes’ Rule. We first briefly cover the history of poker in game-theoretic contexts. Next we characterize Stripped-down Poker: how to play it, what makes it an interesting classroom game, and how to teach its solution to students. We discuss possible applications of this model to real-world interactions, such as litigation, tax evasion, and domestic or international diplomacy. Finally, we suggest modifications of the game either for use in class or as homework problems.

1 David Reiley may be reached at <reiley@eller.arizona.edu>, Mike Urbancic at <urbancic@gmail.com>, and Mark Walker at <mwalker@arizona.edu>. We gratefully acknowledge support from NSF grant SES-0094800. We thank Charlie Holt for the litigation example and Ann Talman for her suggestion of the title.

1. Introduction

In our opinion, effective classroom games should meet three criteria. First, they should be simple enough to be readily understood by students. Second, they should be engaging enough to capture students’ attention and interest. Third, they should be rich enough not only to describe a particular bit of theory, but also to illustrate real-world phenomena. Our classroom game, Stripped-down Poker, satisfies these three criteria and has served as a memorable learning experience to students in our undergraduate classes on game theory. From one simple game, students can obtain insights about signaling games, bluffing, converting from extensive to strategic form, mixed-strategy equilibrium, Bayes’ Theorem, and the value of private information. The game is especially timely given the recent surge of interest in poker in American popular culture; we find that a growing number of our students play poker or watch it on television.

There is nothing new about game-theoretic models of poker. John von Neumann, the father of game theory, formulated two models that served to illustrate the rationality of bluffing. But even he was preceded in this, by French mathematician Émile Borel. For simplicity, both Borel’s and von Neumann’s models feature risk-neutral players and a continuum of possible hands.

Borel’s poker model works as follows. After each player antes one dollar into the pot, each draws a hand represented by a draw from a uniform distribution on [0,1]. After the players privately observe their own hands, the first player moves by either folding or raising. If the first player folds, he forfeits his ante to the second player and ends the game. If the first player raises, he adds an additional dollar to the pot. Then the second player moves by either folding or calling. If the second player folds, she forfeits her ante to the first player and ends the game. If she calls the first player’s bet, she adds an additional dollar to the pot, and both players reveal their hands in a “showdown.” At this point, the player with the highest hand wins the pot, for a net gain of two dollars (the ante plus the additional bet).

Von Neumann’s second poker model is very similar to Borel’s, with the only difference being that the first player’s option to fold is replaced with the option to “check” – that is, stay in the game without raising the stakes. When the first player checks, the second player does not have the opportunity to move, and the holder of the higher card wins the other player’s ante.

Borel’s model yields equilibrium bluffing, in the sense that sometimes a player bets despite knowing that she may have the weaker hand, and her opponent sometimes responds by folding when full information would have revealed that he had the stronger hand. Von Neumann’s model results in even stronger bluffing: the first player bets in equilibrium even with the worst possible hand. Though interesting for very advanced analytical courses, the models of Borel and

\(^2\) von Neumann and Morgenstern (1944).

\(^3\) Borel (1938).

\(^4\) For a detailed analysis of the poker models of Borel and von Neumann, see Ferguson and Ferguson (2003).

\(^5\) While a poker game with an infinite number of potential hands may seem far removed from reality, the number of distinct 5-card poker hands that can be drawn from a standard 52-card deck is larger than one might naively guess: the number of possible combinations of 52 cards taken 5 at a time yields 2,598,960 distinct hands.

\(^6\) Actually, Von Neumann’s first poker model featured a discrete number of possible hands \(s \in \{1, 2, \ldots, S - 1, S\}\). In all other respects, it was identical to the second poker model.

\(^7\) In equilibrium, the first player folds a better hand with probability 1/18, while the second player does so with a probability of 2/27. See Binmore (1991), p. 582.
von Neumann would have limited pedagogical value in most undergraduate courses. First, students find it much more engaging to play a poker game with a real deck of cards rather than a continuous distribution of hands. Second, these models are complicated to analyze: Borel’s model would probably be grasped only by mathematically mature undergraduates, while von Neumann’s model is probably best left for graduate courses.

Since the time of von Neumann, researchers have analyzed many other models of poker and other bluffing games, including the analytical models of Bellman and Blackwell (1949), Kuhn (1950), Nash and Shapley (1950), Isaacs (1955), Karlin and Restrepo (1957), Goldman and Stone (1960), and Friedman (1971). Burns (2005) develops a suite of four simplified poker games to study judgment and decision making in the laboratory, but even these are too complicated for in-class analytical solution. Kuhn’s poker model is the best candidate for pedagogical purposes: it is essentially von Neumann’s model with exactly three possible hands. In Stripped-down Poker, we propose an even simpler variation on Borel’s model, in which only the first player gets a card, and there are only two card types in the deck. We believe this is the simplest possible version of poker, and as discussed below, also the simplest possible example of a signaling game.

2. Playing the Game

We like to play Stripped-down Poker as a game between the instructor and a student volunteer. To introduce the game to your class, emphasize that you will be playing a simplified version of poker for real money, and that the volunteer will be responsible for paying any losses out of his or her pocket. One way to heighten the interest level of the students is for you to pull out money from your own wallet.

Next, describe the nature of the game. Produce the special deck for the game, explain that it contains four kings and four queens, and choose a student from the front row to verify the
deck’s contents to the rest of the class. (This student might also serve as the “dealer” when you actually play the game.) Explain that only the professor receives a card during the game; the student player does not. After each player puts an ante of one dollar into the pot, you (the professor) will receive a randomly drawn card, privately observe what it is, and decide whether to fold or to bet. If you fold, the game ends and the student wins the pot, gaining your dollar ante. When betting, you place another dollar in the pot, after which the student has the option to either fold or call. A fold by the student ends the game, this time with you winning the pot and gaining the student’s dollar ante. Calling requires the student to add another dollar to the pot, and you to reveal your card. You win the pot with a king, and lose the pot with a queen. Since the pot at this stage is four dollars, the winner nets two dollars from the loser.

After describing the rules, ask for a student volunteer. Repeat the game 10-20 times. After several rounds, the first volunteer might decide he doesn’t want to play anymore, so you might ask for a new volunteer every so often.

At first glance, many students believe this to be a fair game. This naïve belief serves two important purposes. First, it produces more willing volunteers. Second, it makes this game especially effective for teaching purposes, since over the course of repeated play the students begin to observe that the professor is winning money on average from the student volunteers. This strongly motivates the students for the subsequent analysis of the game.

For maximum effect, you should attempt to play according to the equilibrium (minimax) strategy, which is to bet always when you have a king and to bet one-third of the time when you have a queen. We find it best to use an external randomization device, such as the second hand of one’s watch. For example, if the number of seconds in the minute is between 0 and 20, you would bet with a queen, but if it is between 20 and 60, you would fold with a queen. It’s crucial that you look at your watch in the same way even if you’ve drawn a king; otherwise, glancing at one’s watch could serve as a “tell” to the students that you are holding a queen, and thus destroy your bluffing advantage. When executing this strategy correctly, the expected payoff turns out to be $0.33 to the professor (-$0.33 to the student), no matter what action the student chooses.

After 10-20 repeated rounds of the game, we recommend beginning the discussion by asking the students whether the game is fair or not. Some students may still think the game is fair, and that you were just lucky to have won a positive amount from the students after 20 rounds. Others, after seeing the professor’s profits, may now believe the game is unfair, but be uncertain where the unfairness comes from. As a cliffhanger, we often choose to schedule this game for the last twenty minutes of one class period, and challenge the students at the end of class to see if they can figure out whether it is a fair game before the next class period, when we do a thorough analysis.

equal payoffs when the ratio of low to high cards is 5:3. The disadvantage is the difficulty of making sure the students understand that different face cards are really equivalent.

Mark likes to describe the game on the chalkboard as if it were just another lecture, then dramatically pull out a deck of cards and his wallet and ask, “Who wants to play?”

The first time David tried this method to randomize, one of his more observant students informed him after class that he had looked harder at his watch after drawing a queen than he had after drawing a king, thus revealing what card he had. Fortunately, not all students noticed this “tell,” but the incident points out how difficult it can be to adopt an appropriate “poker face” for this game.
3. Analytical Exposition

There are a number of directions that you can take the classroom discussion. What you decide to focus on will depend on the level of your course and the ideas that you most wish to illustrate using the game. The following subsections focus on separate potential topics. First, we help the students develop an intuitive understanding of the value of bluffing. Second, we show students how to represent the game in both extensive and strategic form. Third, we solve for the mixed-strategy Nash equilibrium to the game, with probabilistic bluffing and calling. Fourth, we illustrate the use of Bayes’ Rule by considering the probability of the professor having a king given that he has bet. Finally, we use Stripped-down Poker as a very simple signaling game to illustrate signaling equilibrium concepts. You may choose any combination of these topics to meet the needs of your class.

3.1 How Should the Players Play?

We prefer to start our discussion of the game by asking the students some questions to get them thinking and to gauge their understanding. First, you might take a quick survey to see how many students believe that the game is a fair one. You might ask one student to explain why he thinks the game is fair, and ask another student why she thinks it is unfair. Then promise the students a definitive answer in the analysis to come.

Second, you can ask the students what they would do if they were playing in the professor’s position. Many students believe that the professor’s optimal strategy would be to always bet on kings and always fold on queens. When a student suggests this strategy, ask the class what the student player’s best response would be. With a little thought, they should be able to see that if the professor always folds with queens, then the only time the student gets to move is when the professor must have a king, and therefore the student should always fold.

Next you can ask what the professor’s optimal strategy would be if the student always folded. Since there is no chance of the student calling, there is no reason to avoid betting with queens: the professor can bluff the student into folding even though she holds a poor card. The professor’s optimal strategy is thus to always bet and earn $1 when the student folds. But if the professor always bets, what is the student’s optimal strategy? If the professor always bets, then the student should expect there to be a 50% chance of a king and a 50% chance of a queen if he chooses to call. This means if the student calls, his expected payoff is zero. By contrast, if he folds he is guaranteed to lose $1, so his optimal strategy is to always call.

If the student always calls, then what is the professor’s optimal strategy? Then the professor wins by betting with kings but loses by betting with queens, so her optimal strategy is to bet with kings and fold with queens, which takes us back to our starting point. By this intuitive discussion, we manage to demonstrate to students that there is no mutual best response, and hence no pure-strategy Nash equilibrium. This leads us to talk about probabilistic bluffing.

A third question to ask the students is why the professor kept looking at her watch before deciding whether to bet or fold. A few students will likely have noticed this behavior and asked about it during game play. This is a good time to share with the student that you did indeed use your watch as a randomizing device, though we prefer not to say exactly what probabilities we used until we formally solve the game with the class. By now, though, the students should see intuitively that the professor can’t get away with bluffing on queens if she does it all the time, so she might want to consider bluffing randomly with probability less than one.
In a less technical class such as principles, intermediate microeconomics, or law and economics, you might wish to stop with this intuitive level of analysis and skip ahead to the real-world applications of bluffing in Section 5. For undergraduate courses in game theory, we prefer to continue on with a formal analysis of the game, as described in the next two subsections.

3.2 Extensive and Strategic Form

This game offers a nice example for comparing extensive and strategic forms of the same game. Since this is a sequential-move game, begin by drawing its extensive form (see Figure 1). You might ask the students how they would draw the game tree, and complete it on the board with their help. We find that most students do not instantly recognize the initial move by “nature” to deal a card to the professor, particularly as we use this game as a very early example of a game of incomplete information. Another common problem is for students is to forget to include an information set indicating that the student has to move without knowing what card the professor holds.

![Figure 1. Stripped-down Poker in extensive form.](image)

Because the student’s information set contains two nodes, backwards induction cannot be used to solve the game. This leads us naturally to the idea of converting the game to strategic form and looking for a Bayesian Nash equilibrium using a game matrix.

This is a great opportunity to reinforce a concept that many of our students find difficult. We suggest beginning by asking the students: “How many possible strategies does each player have?” Some students mistakenly believe each player has two strategies, as students easily confuse strategies with actions. Others mistakenly believe that each player has four strategies, as
they fail to notice that the student can’t condition his strategy on the card type. In fact, the
professor has four possible strategies (two actions at each of two decision nodes) and the student
has two strategies (two actions at a single information set).

Next, write the 4x2 game matrix up on the board (see Table 1), but allow the students to help
you fill in the expected payoffs. Ask the class, for example, “What is the expected payoff to the
professor if he always bets and the student always calls?” Give them a minute to think about the
question, then ask for a volunteer to explain the answer. Your better students may be able to tell
you the answer right away; if not, point out that for this pair of strategies, the possible payoffs
are either (-2,+2) when the professor has a king or (+2,-2) when the professor holds a queen.
Since these two payoffs happen with equal probability in this game, the expected payoff to each
player is zero in the upper-left cell of the payoff matrix.

With that example under their belt, you can ask the students to calculate the rest of the entries
in the payoff matrix. To engage the entire class in thought (rather than just the few bright
students who always volunteer answers), you might ask the class to take a few minutes to make
the calculations at their desks, in consultation with their classmates. You can stroll around the
room to monitor their progress, and answer questions that individual students might be more
comfortable asking you privately than in front of the entire class. After a few minutes,
reconvene the class and ask student volunteers to help you fill out the rest of the payoff matrix on
the board. The full matrix will be as shown in Table 1.

<table>
<thead>
<tr>
<th>Professor</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB: Bet if K, Bet if Q</td>
<td>Call</td>
</tr>
<tr>
<td></td>
<td>0, 0</td>
</tr>
<tr>
<td>BF: Bet if K, Fold if Q</td>
<td>.5, -.5</td>
</tr>
<tr>
<td>FB: Fold if K, Bet if Q</td>
<td>-.5, .5</td>
</tr>
<tr>
<td>FF: Fold if K, Fold if Q</td>
<td>-1, 1</td>
</tr>
</tbody>
</table>

Table 1. Stripped-down Poker in strategic form.

Next, ask the students whether there are any dominated strategies. Note that the strategies
FB and FF are both strictly dominated for the professor by BB, but that BB and BF are not.
After eliminating the strictly dominated strategies (see Table 2), find each player’s best
responses (see Section 3.1 above) and observe that there is no pure-strategy Nash equilibrium.

<table>
<thead>
<tr>
<th>Professor</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB (Bluff)</td>
<td>Call</td>
</tr>
<tr>
<td></td>
<td>0, 0</td>
</tr>
<tr>
<td>BF (Truth telling)</td>
<td>.5, -.5</td>
</tr>
</tbody>
</table>

Table 2. Elimination of dominated strategies, with best responses indicated by underlines.
3.3 Mixed-Strategy Nash Equilibrium

Once pure-strategy Nash equilibria are ruled out, it is time to look for a mixed-strategy equilibrium.

Let \(p \) represent the probability that the professor plays BB (that is, Bluffing).
Let \(q \) represent the probability that the student plays Call.

In order for me to be willing to mix over two strategies, I must be indifferent between them; otherwise, I would play my preferred pure strategy. This must be true for each player, and this insight enables us to find the equilibrium mixing probabilities. To keep each opponent indifferent, we have the following two equations:

\[
0p - .5(1 - p) = -p + 0(1 - p) \quad \Rightarrow \quad 1.5p = .5 \quad \Rightarrow \quad p = \frac{1}{3}
\]

\[
0q + 1(1 - q) = .5q + 0(1 - q) \quad \Rightarrow \quad 1 = 1.5q \quad \Rightarrow \quad q = \frac{2}{3}
\]

Thus the mixed-strategy Nash equilibrium of this game is:

\[
(1/3 \ BB + 2/3 \ BF; 2/3 \ Call + 1/3 \ Fold),
\]

Or, rewriting the professor’s strategies with a more intuitive interpretation:

\[
(1/3 \ Bluffing + 2/3 \ Truth telling; 2/3 \ Call + 1/3 \ Fold).
\]

At this point, you might ask the students to guess what you were doing when looking at your watch during game play. You can then discuss how you used your external randomization device, and take the opportunity to discuss the importance of keeping one’s opponent guessing. Ask the students, for example, why you looked at your watch even when you held a king (see Section 2 above).

Next, you can compute the expected value of the game to each player. The professor’s expected payoff in equilibrium is a weighted average of the four possible payoffs in Table 2:

\[
2/9 * 0 + 1/9 * 1 + 4/9 * 1/2 + 2/9 * 0 = 1/3.
\]

Since the game is zero-sum, the student’s expected payoff is simply the opposite: -1/3.

We finally have a definitive answer for the students on whether the game is fair or not; the answer is a resounding No. The professor can expect to win one-third of a dollar from the student on each round of the game in equilibrium.\(^{14}\) The source of the unfairness is information

\[^{14}\text{Since the game is zero-sum, the Nash equilibrium is also a minimax equilibrium. If your course covers minimax, you might choose to note that either player can unilaterally guarantee herself the equilibrium payoff by playing her minimax mixture, no matter what non-equilibrium strategy the other player may choose. If the student were deviating from equilibrium, calling more than two-thirds of the time, for example, the professor could conceivably do even better by bluffing less often.}\]
asymmetry: the professor has private information while the student does not, and the professor can use bluffing to press this advantage.

If you would like to emphasize the advantage provided to the player with the private information, you might ask your students to compare these results to those of a related game with no information asymmetry. A very simple variation, which you might call “Blind Stripped-down Poker,” is to have the professor decide to bet before knowing the value of her card. As before, the professor either bets or folds, and if she bets, the student either calls or folds, and in a showdown the professor wins with a king but loses with a queen. The game tree looks the same as above, except that now the professor also has a single information set when she moves, which means that the strategic form is now a 2x2 table instead of a 4x2 table. This game has a pure-strategy equilibrium where the professor always bets, the student always calls, and the equilibrium payoff to each player is zero. Thus, when both players have symmetric information, it is a fair game after all.

3.4 Bayes’ Rule

Stripped-down Poker is ideal for illustrating the use of Bayes’ Rule to update probabilities. After discussing the fact that you actually played your equilibrium mixed strategy during the game, always betting with kings but betting only one-third of the time with queens, ask the students the following question: “Given that I have bet, what is the probability that I’m holding a king?” Typical student responses are one-half or two-thirds, neither of which is correct. Point out that these beliefs crucially determine the student’s optimal decision whether to bet or fold. If the student underestimates the probability that the card is really a king given that the professor has bet, he may call more often than is optimal, which the professor could then exploit (see footnote 14).

Now the students should be motivated to learn Bayes’ Rule. The rule can be illustrated quite simply for this game using a rectangular diagram of all possible states of the world (see Figure 2). The top half of the rectangle represents the states of the world where the professor gets a king, while the bottom half represents the states where she gets a queen. Within the bottom half of the diagram, where the professor holds a queen, the top third represents the states where she bets with a queen, while the bottom two-thirds represents the states where she folds a queen.

In the extreme case where the student always calls, the professor could earn a profit of $0.50 per game (instead of $0.33) by never betting with a queen. In practice, of course, the student would eventually notice that the professor bets only with a king, and start folding.
The shaded part of the diagram thus represents the probability that the professor bets, which is equal to 2/3. To see this formally, let $P(K)$ and $P(Q)$ represent the probabilities of being dealt a king and a queen, respectively, and $P(B)$ be the probability that the professor bets. Using standard notation to denote conditional probabilities, we have:

$$P(B) = P(B|K)P(K) + P(B|Q)P(Q)$$

$$= (1)(1/2) + (1/3)(1/2)$$

$$= 1/2 + 1/6$$

$$= 2/3$$

That is, the professor always bets when she has a king, which is half the time, plus 1/3 of the time when she has a queen, which is a total of 1/6 of the time. Thus, the total probability of betting is $1/2 + 1/6 = 2/3$, which can be seen geometrically in the figure, as the shaded region takes up 2/3 of the total area.

Now we can use the diagram to find the probability that the professor has a king given that she has bet. By dividing the top half of the diagram into thirds, using dashed lines, we can see that the betting region is divided into four equal sections, the first three of which represent betting with a king and the last of which represents betting with a queen. So betting with a queen is only 1/4 of the total betting going on, which means that the probability of the professor having a king conditional on betting is 3/4.

Students can now relate this geometric intuition to the usual formula for Bayes’ Rule, which can enlighten them about a formula that usually confuses many. Formally, Bayes’ Rule tells us:

$$Pr(K|B) = \frac{P(K \text{ and } B)}{P(B)}$$

$$= \frac{P(B|K)P(K)}{[P(B|K)P(K) + P(B|Q)P(Q)]}$$
\[
(1)(1/2) / \left[(1)(1/2) + (1/3)(1/2) \right] \\
= (1/2) / (2/3) \\
= 3/4
\]

So, given that the professor has bet, the probability of a king is not 1/2, not 2/3, but actually 3/4. With this knowledge, we can check to make sure that the student actually does want to play his proposed equilibrium strategy. If the student folds, his payoff is -$1. If he calls given that the professor bets, he has a probability of 3/4 of losing $2 and a probability of 1/4 of winning $2, for an expected payoff of -$1. So he is indeed indifferent between calling and folding, and thus should be willing to follow his equilibrium mixture.

3.5 Poker as a Signaling Game

Since real-world poker clearly involves strategic signaling and screening, we like to use Stripped-down Poker as a simple introduction to the topic of dynamic games of incomplete information. Most games designed to illustrate signaling equilibria, such as the well-known “beer/quiche game” (Cho and Kreps, 1987) or the Attacker/Defender game used in Dixit and Skeath (2004, Section 9.5), are slightly more complicated. They involve a first mover with two types and two possible actions, and a second mover who has two possible actions no matter what the first mover does. Our game simplifies signaling even further by removing the second mover’s ability to act if the first mover chooses to fold. This gives us a 4x2 strategic-form game matrix, by contrast with the 4x4 strategic form of these other standard signaling examples. Though this eliminates some of the richness of a full signaling model, there is a pedagogical advantage to introducing the topic of signaling with Stripped-down Poker.

Game-theory textbooks introduce students to a taxonomy of three types of signaling equilibria: separating equilibria, pooling equilibria, and semi-separating equilibria. Students usually do not find these concepts to be terribly intuitive, in part because the standard signaling games are conceptually difficult and complicated to solve in strategic form. Semi-separating equilibria are particularly subtle and difficult to follow, as they involve only a partial separation of types. We find that most students don’t really even grasp the meaning of “partial separation of types” without the benefit of a simple example, and Stripped-down Poker provides a very good one.

Why does Stripped-down Poker have a semi-separating equilibrium? Recall that a pooling equilibrium involves both types taking the same action. In Stripped-down Poker this would mean that the professor always bets, with both kings and queens, so that the student could not tell what card she holds. By contrast, a separating equilibrium involves each type taking a separate action. In Stripped-down Poker this would mean that the professor bets with kings but

15 By doing so, we are demonstrating that we have found is a Perfect Bayesian equilibrium. That is, we are showing that in addition to being a Nash equilibrium in expected payoffs, the strategies satisfy the refinement that they remain optimal for the players given that their beliefs are updated via Bayes’ Rule. If your course includes the topic of Perfect Bayesian equilibrium, you may wish to point this out as a simple example of the concept, though the refinement has no “bite” in this game.

16 An alternate pooling equilibrium would have the professor fold with both kings and queens, but this would be uninteresting because the student would never get to make a move in this case. Besides, we’ve seen that this is a dominated strategy.
folds with queens, so that the student could infer from a bet that the card was a king. In subsection 3.1 above, we ruled out both the separating strategy and the pooling strategy, showing that neither could be part of an equilibrium. The equilibrium is in fact semi-separating, because observing a bet by the professor does give some information about the card type, but it does not completely identify the card type. In particular, observing the professor to bet allows the student to update the probability of a king from 1/2 to 3/4, but not all the way to 1. Semi-separating equilibria typically involve mixed strategies.

One difference between Stripped-down Poker and standard signaling models is that in the latter, one type of first mover typically wants to signal his type truthfully, while one type does not. For example, in the beer/quiche game the strong type wants the would-be bully to know that he really is strong, but the weak type wants the bully to think that he’s really a strong type. By contrast, in Stripped-down Poker the professor never wants the student to know her type truthfully. If she has a king, she would like the student to think she has a queen, so that the student will call and she can win $2 instead of $1. If she has a queen, she would like the student to think she has a king, so that the student will fold and she can win $1 instead of losing $2. When discussing signaling models, it may be worth pointing out this difference.

Real-world versions of poker, such as Texas Hold’Em, have some of this flavor. A player with a weak hand may sometimes wish to bluff in order to get others to fold, and a player with a strong hand may sometimes wish to “slow play” in order to keep others in the game and win more money from them. But real-world poker is also much richer and more complicated, with multiple rounds of betting and multiple rounds of cards being dealt. Sometimes real poker players do want to signal truthfully. For instance, a player may think he likely has the current best hand with three of a kind, but worries that if others stay in the betting they may eventually draw a card that completes a flush and thus beat him. By betting aggressively, the player can drive out competition and win the hand before such a reversal of fortune. Poker may also involve screening, as when an early player deliberately bets in order to see how a later player will respond; if the later player raises my bet, for example, I may conclude that he likely has a very strong hand and therefore am willing to fold. In a small class where many students are quite familiar with more complicated versions of poker, these sorts of topics might lead to useful discussions. In order to avoid turning off students not interested in Texas Hold’Em, we prefer to keep such discussion to a minimum and instead move on to the applications in the next section.

4. Applications

Stripped-down Poker is an extremely simple two-player game, yet it can roughly model intriguing real-life interactions. Stripped-Down poker is isomorphic to any signaling-type game where one of the signaler’s actions could be thought of as ending the game. The terminal action

17 An alternate separating equilibrium would have the professor fold with kings and bet with queens, allowing the student to infer a queen when he sees a bet. But this alternative is less interesting, as we have already shown that this strategy would be dominated for the professor.

18 In Problem 2 in the Appendix, we present a problem with a pure-strategy equilibrium that could plausibly be called semi-separating. There are three types (jack, queen, king) but only two possible actions, so even though the equilibrium involves a pure strategy for the first player, the second player only gets partial separation of types.

19 There are lots of references available for students interested in strategy in real-world poker. For example, Caro (2003) makes the interesting point that poker is a sufficiently complicated game that, facing a real human opponent, one’s optimal strategy is likely not a fixed equilibrium strategy. For a more general introduction to poker strategy and technique, see Sklansky (1989).
can be thought of as a fold, while the other action(s) would represent a bet. The first two examples below are fleshed out in the Appendix with numerical exercises suitable for student problem sets; both have semi-separating equilibria just like those of the classroom game.

Litigation is one very nice example.\(^{20}\) A plaintiff sues for damages in civil court. The defendant has private information as to whether or not he is really guilty, but the plaintiff only has an assessment of the probability of guilt. For simplicity, assume that should the case go to trial, then the court will find out the truth, finding for the plaintiff if and only if the defendant is guilty. Before going to trial, the defendant has the option of offering a settlement to the plaintiff. If he offers a generous settlement, the plaintiff will accept and drop the case. As the game would end here, this action may be thought of as a “fold” by the defendant. On the other hand, the defendant could “bet” by offering a stingy settlement, to which the plaintiff may respond by either accepting the stingy settlement (folding) or rejecting it (calling). Going to court might be costly to both parties, so the plaintiff may have an incentive to accept the settlement at least some of the time.

A similar example involves tax evasion and auditing.\(^{21}\) Consider the reporting of income from tips by a waitress to the Internal Revenue Service. Both parties may have the same priors about the probability of earning high versus low tip income, but only the waitress knows how much was actually realized in tips. The waitress may report the truth and pay the appropriate taxes (a fold), or she may underreport high tip income and pay less in taxes (a bet). When the IRS receives a high tax payment, it does not suspect any problem and takes no action (i.e., the game ends). When it receives a low tax payment, it either chooses to audit the waitress (call) or to accept the waitress’s reporting (fold). If found guilty of underreporting her tips, the waitress will be responsible for her true tax liability and perhaps an additional penalty as well. Both parties incur costs in the case of an audit, whether the waitress is found innocent or not. As both of these examples show, the game need not be zero-sum to benefit from the insights of Stripped-down Poker; interesting efficiency issues (“What are the social costs of equilibrium auditing?”) can arise in these games.

Other applications relate to politics at all levels, from international to domestic (household) conflicts. A dictator suspected of harboring weapons of mass destruction may comply in full with international inspections (a fold), or may obstruct such inspections in order to maintain his threat of power at the risk of military intervention (a bet). A schoolboy required to complete homework before playing with friends may actually do his homework first (a fold) or may simply tell his mother that it is done (a bet), possibly gaining more time to play at the risk of being caught.

These applications also present an opportunity to discuss with the students the question of choosing an appropriate economic model. Depending on one’s willingness to simplify each of the above situations, one might model the actions available to the first mover as binary, multiple yet discrete, or continuous. The binary case fits the poker model exactly; the agent literally has only two options available, which are then precisely equivalent to a fold and a bet in Stripped-down Poker. However, real life situations very often offer a range of intermediate alternatives, sometimes even a continuum of them. The waitress may report an intermediate level of tip income. The schoolboy may do part of his homework or do it sloppily. The dictator may come clean about certain weapons programs but remain ambiguous about the status of others. You might encourage students to extend this model to make it more realistic: when the number of

\(^{20}\) See Exercise 3 in the Appendix.

\(^{21}\) See Exercise 4 in the Appendix.
actions available to the first mover is more than two but still discrete and relatively small, Stripped-down Poker may be extended to include these possibilities; we consider this possibility in the next section.

6. Extensions and Exercises

One of the greatest virtues of Stripped-down Poker is its simplicity. However, if more complex examples are desired, the game lends itself very well to a host of extensions to challenge your students.

Perhaps most interesting, one might ask, “How would we have to change the composition of the deck in order to make this a fair game?” We find this to be a challenging extra-credit problem for our students to consider. The answer turns out to be a deck with $3/8$ kings and $5/8$ queens, so the “fair” game can be conveniently be played by replacing one of the four kings in the original deck with a queen. A sketch of the solution to this problem can be found in Exercise 1 of the Appendix.

Second, one might add other types of cards to the deck. For example, a version of Stripped-down Poker could be played where the deck contains kings, queens, and jacks. The first mover draws a card, privately views it, and either bets or folds. The second mover may then fold or call as before. The king would then represent victory for the professor, the jack would represent victory for the student, and the queen would represent a “push,” in which case the two players split the pot. This game turns out to have an 8×3 strategic-form game table with one pure-strategy equilibrium, and the game is tractable enough to be an excellent homework problem to test the students’ understanding of converting imperfect-information games from extensive to strategic form. Supplemented with additional card types allows Stripped-down Poker to model a limited number of multiple discrete first-mover actions, which is the extension alluded to at the end of section 5.

Third, one might change the information dynamics by having each player draw a card. For a player to win the pot in a showdown, she must hold a card higher in value than her opponent. If both players hold cards of the same value, consider the game a “push” and return the players’ money. This makes the game more like real-world poker. There are a number of possible variations to consider; we recommend exercise 9.8 of Dixit and Skeath (2004) as one interesting and tractable example. It is also possible to think about extending the game to have multiple rounds of betting, more than two players, and/or more than two card types, in order to address questions of first-mover or last-mover advantage in poker and other information games. These extensions may, however, be beyond the reach of all but the best undergraduates.

7. Conclusion

We have presented a simple classroom game based on poker that seeks to provide significant instructional benefits with a minimum of materials and preparation. Stripped-down Poker is

22 The game also turns out to have an infinite number of mixed-strategy equilibria.

23 See Exercise 2 in the Appendix.

24 This exercise is very similar to von Neumann’s rather than Borel’s poker model. In addition, it has the feature that the amount of the bet is twice the amount of the initial ante. This model proves to be a bit more interesting (with a unique mixed-strategy equilibrium) than the two-card version of Borel’s model, which has a somewhat uninteresting pure-strategy equilibrium.

25 See, for example, Karlin and Retstrepo (1957).
thoroughly engaging in a classroom setting, and its analysis is accessible to students. The game lends itself to a number of interesting variations and applications which can be explored by students both in class and in out-of-class exercises. We find it a useful, effective, flexible, and memorable teaching tool. And it’s fun!
References

Appendix – Example Homework Problems

1. What mix of kings and queens is required to make Stripped-down Poker a fair game (i.e., such that the value to both players is zero)?

 [To solve this game, first find the payoffs in the normal-form game in terms of \(k \), where \(k \) is the fraction of kings in the deck. Note that the game is not fair either when \(k = 0 \) or when \(k = 1 \). Also, note that when \(k > 0 \) the strategies FB and FF are dominated for the professor by BB and BF respectively. Next, find the mixed strategy equilibrium of the remaining two-by-two normal-form game. The equilibrium mixture for each player will be a function of \(k \) instead of a fixed value. Now find the expected value of the game for the professor by multiplying the expected payoff of each cell of the game table by the probability that that cell is reached in equilibrium and then summing the four resulting products. Set this expression equal to zero and solve for \(k \). The answer turns out to be \(k = 3/8 \).]

2. In class, we played a simplified version of poker, played by the professor against a student. We each ante, then I draw a card, then I bet or fold, and if I bet, you either call or fold. If I fold, you win my $1 ante. If you fold, I win your $1 ante. If I bet and you call, I win $2 from you ($1 ante plus $1 additional bet) if I have a king, and lose $2 to you if I have a queen. We computed the equilibrium to that game in class.

 Now let's consider a slightly more complicated version of that game. Suppose that I now use a deck with three types of cards: 4 kings, 4 queens, and 4 jacks. All rules remain the same as before, except for what happens when I bet and you call. When I bet and you call, I win $2 from you if I have a king, we "tie" and each get back our money if I have a queen, and I lose $2 to you if I have a jack.

 a. Draw the game tree for this game. Label the two players as “professor” and “student.” Be careful to label information sets correctly. Indicate the payoffs at each terminal node.

 b. How many pure strategies does the professor have in this game? Explain your reasoning.

 c. How many pure strategies does the student have in this game? Explain your reasoning.

 d. Represent this game in strategic form. This should be a matrix of expected payoffs for each player, given a pair of strategies.

 e. Find the unique pure-strategy Nash equilibrium to this game. Explain in English what the strategies are.

 f. Would you call this a pooling equilibrium, a separating equilibrium, or a semi-separating equilibrium?

 g. In equilibrium, what is the expected payoff to the professor of playing this game?

3. Corporate lawsuits may sometimes be signaling games. Here is one example. In 2003, AT&T filed suit against eBay, alleging that its Billpoint and PayPal electronic-payment systems infringe on AT&T’s 1994 patent on “mediation of transactions by a communications system.” Let’s consider this situation from the point in time when the suit was filed. In response to this suit, as in most patent-infringement suits, eBay can offer to settle with AT&T without going to court. If AT&T accepts eBay’s settlement offer, there will be no trial. If AT&T rejects eBay’s settlement offer, the outcome will be determined by the court.

 The amount of damages claimed by AT&T is not publicly available. Let’s assume that AT&T is suing for $300 million. In addition, let’s assume that if the case goes to trial, the two parties will incur court costs (paying lawyers and consultants) of $10 million each.

 Because eBay is actually in the business of processing electronic payments, we might think that eBay knows more than AT&T does about its probability of winning the trial. For simplicity, let’s assume that eBay knows for sure whether it will be found innocent (i) or guilty (g) of patent infringement. From AT&T’s point of view,
there is a 25% chance that eBay is guilty (g) and a 75% chance that eBay is innocent (i).

Let’s also suppose that eBay has two possible actions: a generous settlement offer (G) of $200 million or a stingy settlement offer (S) of $20 million. If eBay offers a generous settlement, assume that AT&T will accept, thus avoiding a costly trial. If eBay offers a stingy settlement, then AT&T must decide whether to accept (A) and avoid a trial, or reject and take the case to court (C). In the trial, if eBay is guilty it must pay AT&T $300 million in addition to paying all the court costs. If eBay is found innocent it will pay AT&T nothing, and AT&T will pay all the court costs.

a. Write down the extensive-form game tree for this game. Be careful about information sets.

b. Which of the two players has an incentive to bluff in this game? What would bluffing consist of? Explain your reasoning.

c. Write down the strategic-form game matrix for this game. Find all of the Nash equilibria to this game. What are the expected payoffs to each player in equilibrium?

4. Wanda works as a waitress, and consequently has the opportunity to earn cash tips that are not reported by her employer to the Internal Revenue Service. Her tip income is rather variable. In a good year (G), she earns high income, so that her tax liability to the IRS is $5000. In a bad year (B), she earns low income, and her tax liability to the IRS is $0. The IRS knows that the probability of her having a good year is 0.6, and the probability of her having a bad year is 0.4, but it doesn’t know for sure which outcome has resulted for her this tax year.

In this game, first Wanda decides how much income to report to the IRS. If she reports high income (H), she pays the IRS $5000. If she reports low income (L), she pays the IRS $0. Then the IRS has to decide whether to audit Wanda. If she reports high income, they do not audit, because they automatically know they’re already receiving the tax payment Wanda owes. If she reports low income, then the IRS can either audit (A) or not audit (N). When the IRS audits, it costs the IRS $1000 in administrative costs, and also costs Wanda $1000 in the opportunity cost of the time spent gathering bank records and meeting with the auditor. If the IRS audits Wanda in a bad year (B), then she owes nothing to the IRS, although she and the IRS have each incurred the $1000 auditing cost. If the IRS audits Wanda in a good year (G), then she has to pay the $5000 she owes to the IRS, in addition to her and the IRS each incurring the cost of auditing.

a. Suppose that Wanda has a good year (G), but she reports low income (L). Suppose the IRS then audits her (A). What is the total payoff to Wanda, and what is the total payoff to the IRS?

b. Which of the two players has an incentive to bluff in this game? What would bluffing consist of?

c. Write down the extensive-form game tree for this game. Be careful about information sets.

d. How many pure strategies does each player have in this game? Explain your reasoning.

e. Write down the strategic-form game matrix for this game. Find all of the Nash equilibria to this game. Identify whether the equilibria you find are separating, pooling, or semi-separating.

f. Let x equal the probability that Wanda has a good year. In the original version of this problem, we had $x = 0.6$. Find a value of x such that Wanda always reports low income in equilibrium.

g. What is the full range of values of x for which Wanda always reports low income in equilibrium?